Greenleaf's Yaysaying control.

Parameters:

Parameters:
See dedicated page for more information.
R_Greenleaf applies Greenleaf’s method to reduce systematic agreement bias in questionnaire responses.
Given each respondent’s mean (Mi) and standard deviation (SDevi) across a set of items, the action outputs adjusted scores (GL_<item>) for the chosen item columns. The strength of the correction is controlled by W1 (0–1).
Control acquiescence (“yaysaying”) bias in Likert-style survey data by adjusting each respondent’s item scores using their personal mean and dispersion. Produces bias-corrected scores for a selected set of items.
Q1, Q2, Q3) — all on the same Likert scale (e.g., 1–5).Mi — respondent’s mean across the selected items.SDevi — respondent’s sample standard deviation across the selected items.Accepted formats: CSV, table from upstream action. All selected columns must be numeric.
Minimal example (CSV):
Mi,SDevi,Q1,Q2,Q3
4.000,1.000,5,4,3
3.333,0.577,4,3,3
2.667,1.155,2,2,4
4.000,1.000,3,4,5
1.333,0.577,1,2,1
Tip: If your source file contains only item columns, compute
MiandSDevirow-wise first (e.g., with a “Row Stats/Row Aggregates” action).
GL_<item> (e.g., GL_Q1, GL_Q2, GL_Q3) on the original scale.Example (first 5 rows):
Mi SDevi Q1 Q2 Q3 GL_Q1 GL_Q2 GL_Q3
4.000 1.000 5 4 3 4.76 4 3
3.333 0.577 4 3 3 3.90 3 3
2.667 1.155 2 2 4 1.80 1.80 3.80
4.000 1.000 3 4 5 3.00 4 4.76
1.333 0.577 1 2 1 0.60 2.20 0.60
Interpretation:
GL_*values are the item scores with acquiescence bias reduced using each respondent’sMiandSDevi. Higher W1 → stronger correction; W1 = 0 → no change.
Prepare input data
Ensure you have columns Mi, SDevi, and the item columns to correct (Q1..Qk). All must be numeric.
(If reading CSV) Import data
readCSV: delimiter ,, decimal .Mi,SDevi,Q1..Qk to Float/Double.Open R_Greenleaf → Parameters
idxVars → select Q1, Q2, Q3 (or your item set)Mi → MiSDevi → SDeviW1 → 0.4 (adjust as desired)noneRun
Inspect the Data tab of the action’s output for new columns GL_Q1..GL_Qk.
Optionally add writeCSV to export results.
readCSV → ChangeDataType (cast Mi,SDevi,Q1..Qk to float) → R_Greenleaf → writeCSV

Shows idxVars=Q1,Q2,Q3, Mi=Mi, SDevi=SDevi, W1=0.4, and partitioning=none.

Demonstrates delimiter ,, decimal ., header row ON.

Illustrates casting of Mi,SDevi,Q1,Q2,Q3 to Float; strict conversion ON.

Displays resulting table including GL_Q1,GL_Q2,GL_Q3.

Confirms successful execution and file save.
non-numeric argument to binary operator, cast types before R_Greenleaf.NULL; downstream stats should account for them.0.3–0.5. Increase only if diagnostics indicate strong acquiescence bias.idxVars and the chosen W1.Mi = row-mean across the selected itemsSDevi = row sample SD across the selected itemsidxVars includes only numeric item columnsW1 between 0 and 1GL_<item> columns on the same scale as inputs