Partial least square and principal component regression.

Parameters:

Parameters:
See dedicated page for more information.
The R_PLS_PCR action performs Partial Least Squares (PLS) or Principal Component Regression (PCR) for multivariate regression problems. It reduces dimensionality while preserving variance in the predictors, then builds a regression model to predict the target variable. It supports automatic component selection and generates charts for model diagnostics and variable importance.
y)x1, x2, x3)🖼️ Example Input CSV:

🖼️ Example Output Charts:
👉 PLS example

👉 PCR example

| Id | Description | Example Value |
|---|---|---|
Predictors |
Predictor columns | x1, x2, x3 |
idxTarget |
Target variable | y |
idxModel |
Model type | PLS or PCR |
idxMissing |
Missing value handling | replace by mean |
idxCV |
Cross-validation type | none |
idNcomp |
Number of components to retain | 0 (auto) or 3 |
idScale |
Whether to scale predictors | true (recommended) |
idxDimPlot |
Show dimension loadings | in main plot |
idxSubDir |
Add timestamp to output folder | none |
idxFileName |
Output model name | PLS |
idxSaveModel |
Save model to file | false (toggle on/off) |
idxSeed |
Seed value for reproducibility | 42 |
idOutput |
Output chart style | chart |
idAlpha |
Significance threshold for R² changes | 0.05 |
PLS or PCR).🖼️ Example Successful Run Log:

PLS Example
115.667570.07575PCR Example
116.143980.01869To avoid errors:
Do not include missing or constant values
Ensure all predictors and target columns are numeric
Recommended minimum: 10 rows of data
The model will automatically determine the number of components if idNcomp = 0.
❌ Error: Not enough data to run a model
replace by mean❌ Error: object 'nn' not found
